Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Lab Anim ; : 236772231192030, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353042

ABSTRACT

Animal welfare has evolved during the past decades to improve not only the quality of life of laboratory rodents but also the quality and reproducibility of scientific investigations. Bibliometric analysis has become an important tool to complete the current knowledge with academic databases. Our objective was to investigate whether scientific research on cannibalism/infanticide is connected with maternal aggression towards the offspring in laboratory rodents. To carry out our research, we performed a specific search for published articles on each concept. Results were analyzed in the open-source environment RStudio with the package Bibliometrix. We obtained 253 and 134 articles for the first search (cannibalism/infanticide) and the second search (maternal aggression towards the pups) respectively. We observed that the interest in infanticide/cannibalism started in the 1950s, while researchers started showing interest in maternal aggression towards the pups 30 years later. Our analyses indicated that maternal aggression had better citations in scientific literature. In addition, although our results showed some common features (e.g. oxytocin or medial preoptic area in the brain), we observed a gap between cannibalism/infanticide and maternal aggression towards the pups with only 14 published articles in common for both the searches. Therefore, we recommend researchers to combine both concepts in further investigations in the context of cannibalism for better dissemination and higher impact in laboratory rodents' welfare research.

2.
J Stroke Cerebrovasc Dis ; 31(11): 106753, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36115105

ABSTRACT

OBJECTIVES: In this study, we developed a deep learning pipeline that detects large vessel occlusion (LVO) and predicts functional outcome based on computed tomography angiography (CTA) images to improve the management of the LVO patients. METHODS: A series identifier picked out 8650 LVO-protocoled studies from 2015 to 2019 at Rhode Island Hospital with an identified thin axial series that served as the data pool. Data were annotated into 2 classes: 1021 LVOs and 7629 normal. The Inception-V1 I3D architecture was applied for LVO detection. For outcome prediction, 323 patients undergoing thrombectomy were selected. A 3D convolution neural network (CNN) was used for outcome prediction (30-day mRS) with CTA volumes and embedded pre-treatment variables as inputs. RESULT: For LVO-detection model, CTAs from 8,650 patients (median age 68 years, interquartile range (IQR): 58-81; 3934 females) were analyzed. The cross-validated AUC for LVO vs. not was 0.74 (95% CI: 0.72-0.75). For the mRS classification model, CTAs from 323 patients (median age 75 years, IQR: 63-84; 164 females) were analyzed. The algorithm achieved a test AUC of 0.82 (95% CI: 0.79-0.84), sensitivity of 89%, and specificity 66%. The two models were then integrated with hospital infrastructure where CTA was collected in real-time and processed by the model. If LVO was detected, interventionists were notified and provided with predicted clinical outcome information. CONCLUSION: 3D CNNs based on CTA were effective in selecting LVO and predicting LVO mechanical thrombectomy short-term prognosis. End-to-end AI platform allows users to receive immediate prognosis prediction and facilitates clinical workflow.


Subject(s)
Brain Ischemia , Stroke , Female , Humans , Aged , Artificial Intelligence , Thrombectomy/adverse effects , Computed Tomography Angiography/methods , Middle Cerebral Artery , Retrospective Studies
3.
JMIR Med Inform ; 9(7): e27449, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34254937

ABSTRACT

The global and national response to the COVID-19 pandemic has been inadequate due to a collective lack of preparation and a shortage of available tools for responding to a large-scale pandemic. By applying lessons learned to create better preventative methods and speedier interventions, the harm of a future pandemic may be dramatically reduced. One potential measure is the widespread use of contact tracing apps. While such apps were designed to combat the COVID-19 pandemic, the time scale in which these apps were deployed proved a significant barrier to efficacy. Many companies and governments sprinted to deploy contact tracing apps that were not properly vetted for performance, privacy, or security issues. The hasty development of incomplete contact tracing apps undermined public trust and negatively influenced perceptions of app efficacy. As a result, many of these apps had poor voluntary public uptake, which greatly decreased the apps' efficacy. Now, with lessons learned from this pandemic, groups can better design and test apps in preparation for the future. In this viewpoint, we outline common strategies employed for contact tracing apps, detail the successes and shortcomings of several prominent apps, and describe lessons learned that may be used to shape effective contact tracing apps for the present and future. Future app designers can keep these lessons in mind to create a version that is suitable for their local culture, especially with regard to local attitudes toward privacy-utility tradeoffs during public health crises.

4.
J Digit Imaging ; 34(3): 541-553, 2021 06.
Article in English | MEDLINE | ID: mdl-34027588

ABSTRACT

Automated segmentation templates can save clinicians time compared to de novo segmentation but may still take substantial time to review and correct. It has not been thoroughly investigated which automated segmentation-corrected segmentation similarity metrics best predict clinician correction time. Bilateral thoracic cavity volumes in 329 CT scans were segmented by a UNet-inspired deep learning segmentation tool and subsequently corrected by a fourth-year medical student. Eight spatial similarity metrics were calculated between the automated and corrected segmentations and associated with correction times using Spearman's rank correlation coefficients. Nine clinical variables were also associated with metrics and correction times using Spearman's rank correlation coefficients or Mann-Whitney U tests. The added path length, false negative path length, and surface Dice similarity coefficient correlated better with correction time than traditional metrics, including the popular volumetric Dice similarity coefficient (respectively ρ = 0.69, ρ = 0.65, ρ = - 0.48 versus ρ = - 0.25; correlation p values < 0.001). Clinical variables poorly represented in the autosegmentation tool's training data were often associated with decreased accuracy but not necessarily with prolonged correction time. Metrics used to develop and evaluate autosegmentation tools should correlate with clinical time saved. To our knowledge, this is only the second investigation of which metrics correlate with time saved. Validation of our findings is indicated in other anatomic sites and clinical workflows. Novel spatial similarity metrics may be preferable to traditional metrics for developing and evaluating autosegmentation tools that are intended to save clinicians time.


Subject(s)
Benchmarking , Thoracic Cavity , Humans , Tomography, X-Ray Computed , Workflow
5.
IEEE Trans Pattern Anal Mach Intell ; 43(3): 753-765, 2021 03.
Article in English | MEDLINE | ID: mdl-31567073

ABSTRACT

Image matching and retrieval is the underlying problem in various directions of computer vision research, such as image search, biometrics, and person re-identification. The problem involves searching for the closest match to a query image in a database of images. This work presents a method for generating a consensus amongst multiple algorithms for image matching and retrieval. The proposed algorithm, Shortest Hamiltonian Path Estimation (SHaPE), maps the process of ranking candidates based on a set of scores to a graph-theoretic problem. This mapping is extended to incorporate results from multiple sets of scores obtained from different matching algorithms. The problem of consensus-based decision-making is solved by searching for a suitable path in the graph under specified constraints using a two-step process. First, a greedy algorithm is employed to generate an approximate solution. In the second step, the graph is extended and the problem is solved by applying Ant Colony Optimization. Experiments are performed for image search and person re-identification to illustrate the efficiency of SHaPE in image matching and retrieval. Although SHaPE is presented in the context of image retrieval, it can be applied, in general, to any problem involving the ranking of candidates based on multiple sets of scores.


Subject(s)
Algorithms , Pattern Recognition, Automated , Artificial Intelligence , Biometry , Consensus , Humans
6.
Med Phys ; 47(11): 5941-5952, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32749075

ABSTRACT

This manuscript describes a dataset of thoracic cavity segmentations and discrete pleural effusion segmentations we have annotated on 402 computed tomography (CT) scans acquired from patients with non-small cell lung cancer. The segmentation of these anatomic regions precedes fundamental tasks in image analysis pipelines such as lung structure segmentation, lesion detection, and radiomics feature extraction. Bilateral thoracic cavity volumes and pleural effusion volumes were manually segmented on CT scans acquired from The Cancer Imaging Archive "NSCLC Radiomics" data collection. Four hundred and two thoracic segmentations were first generated automatically by a U-Net based algorithm trained on chest CTs without cancer, manually corrected by a medical student to include the complete thoracic cavity (normal, pathologic, and atelectatic lung parenchyma, lung hilum, pleural effusion, fibrosis, nodules, tumor, and other anatomic anomalies), and revised by a radiation oncologist or a radiologist. Seventy-eight pleural effusions were manually segmented by a medical student and revised by a radiologist or radiation oncologist. Interobserver agreement between the radiation oncologist and radiologist corrections was acceptable. All expert-vetted segmentations are publicly available in NIfTI format through The Cancer Imaging Archive at https://doi.org/10.7937/tcia.2020.6c7y-gq39. Tabular data detailing clinical and technical metadata linked to segmentation cases are also available. Thoracic cavity segmentations will be valuable for developing image analysis pipelines on pathologic lungs - where current automated algorithms struggle most. In conjunction with gross tumor volume segmentations already available from "NSCLC Radiomics," pleural effusion segmentations may be valuable for investigating radiomics profile differences between effusion and primary tumor or training algorithms to discriminate between them.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pleural Effusion , Thoracic Cavity , Algorithms , Benchmarking , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Humans , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Pleural Effusion/diagnostic imaging , Tomography, X-Ray Computed
7.
Front Neurosci ; 13: 1053, 2019.
Article in English | MEDLINE | ID: mdl-31636533

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide and is one of the leading sources of morbidity and mortality in the aging population. There is a long preclinical period followed by mild cognitive impairment (MCI). Clinical diagnosis and the rate of decline is variable. Progression monitoring remains a challenge in AD, and it is imperative to create better tools to quantify this progression. Brain magnetic resonance imaging (MRI) is commonly used for patient assessment. However, current approaches for analysis require strong a priori assumptions about regions of interest used and complex preprocessing pipelines including computationally expensive non-linear registrations and iterative surface deformations. These preprocessing steps are composed of many stacked processing layers. Any error or bias in an upstream layer will be propagated throughout the pipeline. Failures or biases in the non-linear subject registration and the subjective choice of atlases of specific regions are common in medical neuroimaging analysis and may hinder the translation of many approaches to the clinical practice. Here we propose a data-driven method based on an extension of a deep learning architecture, DeepSymNet, that identifies longitudinal changes without relying on prior brain regions of interest, an atlas, or non-linear registration steps. Our approach is trained end-to-end and learns how a patient's brain structure dynamically changes between two-time points directly from the raw voxels. We compare our approach with Freesurfer longitudinal pipelines and voxel-based methods using the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model can identify AD progression with comparable results to existing Freesurfer longitudinal pipelines without the need of predefined regions of interest, non-rigid registration algorithms, or iterative surface deformation at a fraction of the processing time. When compared to other voxel-based methods which share some of the same benefits, our model showed a statistically significant performance improvement. Additionally, we show that our model can differentiate between healthy subjects and patients with MCI. The model's decision was investigated using the epsilon layer-wise propagation algorithm. We found that the predictions were driven by the pallidum, putamen, and the superior temporal gyrus. Our novel longitudinal based, deep learning approach has the potential to diagnose patients earlier and enable new computational tools to monitor neurodegeneration in clinical practice.

8.
Stroke ; 50(11): 3093-3100, 2019 11.
Article in English | MEDLINE | ID: mdl-31547796

ABSTRACT

Background and Purpose- The availability of and expertise to interpret advanced neuroimaging recommended in the guideline-based endovascular stroke therapy (EST) evaluation are limited. Here, we develop and validate an automated machine learning-based method that evaluates for large vessel occlusion (LVO) and ischemic core volume in patients using a widely available modality, computed tomography angiogram (CTA). Methods- From our prospectively maintained stroke registry and electronic medical record, we identified patients with acute ischemic stroke and stroke mimics with contemporaneous CTA and computed tomography perfusion (CTP) with RAPID (IschemaView) post-processing as a part of the emergent stroke workup. A novel convolutional neural network named DeepSymNet was created and trained to identify LVO as well as infarct core from CTA source images, against CTP-RAPID definitions. Model performance was measured using 10-fold cross validation and receiver-operative curve area under the curve (AUC) statistics. Results- Among the 297 included patients, 224 (75%) had acute ischemic stroke of which 179 (60%) had LVO. Mean CTP-RAPID ischemic core volume was 23±42 mL. LVO locations included internal carotid artery (13%), M1 (44%), and M2 (21%). The DeepSymNet algorithm autonomously learned to identify the intracerebral vasculature on CTA and detected LVO with AUC 0.88. The method was also able to determine infarct core as defined by CTP-RAPID from the CTA source images with AUC 0.88 and 0.90 (ischemic core ≤30 mL and ≤50 mL). These findings were maintained in patients presenting in early (0-6 hours) and late (6-24 hours) time windows (AUCs 0.90 and 0.91, ischemic core ≤50 mL). DeepSymNet probabilities from CTA images corresponded with CTP-RAPID ischemic core volumes as a continuous variable with r=0.7 (Pearson correlation, P<0.001). Conclusions- These results demonstrate that the information needed to perform the neuroimaging evaluation for endovascular therapy with comparable accuracy to advanced imaging modalities may be present in CTA, and the ability of machine learning to automate the analysis.


Subject(s)
Brain Ischemia/diagnostic imaging , Computed Tomography Angiography , Databases, Factual , Deep Learning , Diagnosis, Computer-Assisted , Electronic Health Records , Neural Networks, Computer , Neuroimaging , Registries , Stroke/diagnostic imaging , Acute Disease , Aged , Brain Ischemia/therapy , Female , Humans , Male , Middle Aged , Prospective Studies , Stroke/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...